

High quality thin film coatings by pulsed pressure CVD

- Contract UOCX0710
- Commenced 1/1/2008, ends 31/12/2010

Conventional CVD Chemical Vapour Deposition

OPPORTUNITIES

- Thin Film Devices:
 - Solar PV
 - Insulating layers on Semiconductors
 - Piezoceramics
 - Scratch resistant and antireflective coatings on optics
 - Wear resistant coatings on machine tools
- Multi billion \$ market for Production Tools

CHALLENGES

- Inefficient, Expensive, Toxic Chemicals
- Uniformity, Quality, Throughput
- Long lead time and high price of equipment are barriers to new products

PP-CVD can meet these challenges and become a transformational product

IF we can design optimised reactors This requires a modelling capability

Goals of this contract

- Rapid expansion
- Mass flux even across chamber
- Films of uniform thickness
- Simple design
- Short lead time
- Successful use in laboratory:
 - Yttria stabilised Zirconia
 - Titanium Dioxide
 - Diamond-like carbon
 - Biocompatible hydroxyapatite
- Estimated cost \$0.1M
- Replace machines currently retailing at \$2M each
- Market at least \$4M/year at entry level

/hare Wānanga o Waitaha ISTCHURCH NEW ZEALAND

NIVERSITY OF

ANTERBURY

HA coating on a porous scaffold

RESEARCH SCIENCE & TECHNOLOGY

Strategic plan

Key personnel

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

MapPoint

ISLAND

JAPAN

East China Sea RYUKYL

Philippine Sea

Ta-kuang-l

South China Sea

@2002 Microsoft Con

Do-luan-pi

PP-CVD system

design

Experimental validation of flow field

of flow field

Key relationships

- Buckley Systems *Simon Longdill*
 - Manufacture of final system
 - Current business:
 - precision electromagnets
 - ion beam physics hardware
 - high vacuum equipment
 - used in the semi-conductor ion implant industry and laboratory research.
 - Annual turnover is \$50 million
 - 150 employees

Future Development

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

- Breakthrough Products
 - High Temperature Superconductors
 Industrial Research Ltd
 - Microwave Guides
 - •Lake Technology Ltd.
 - •Microwave and Materials Designs Pty. Ltd.

•Bone Implant Bio-Integration Coatings •Zimmer, Enztek

Acetabular Shell

Development of PDSC

<u>(first 24 months)</u>

- Conventional Navier-Stokes solvers (CFD) <u>cannot</u> simulate gas flow in the rarefied regions
- Parallel Direct Simulation Monte Carlo (PDSC)
 - Track individual gas molecules as they travel through the reactor and collide with other gas molecules, walls and substrate
 - Long computational run-times in regions of dense gas
 - Plan to hybridise with a solution scheme which is faster in dense regions
- Quiet Direct Simulation
 - Assume equilibrium: Maxwell-Boltzmann distribution
 - Divide distribution into bins
 - Track motion of collection of molecules in each bin
 - Calculate flow of mass, momentum and energy from cell to cell
- Hybrid
 - Code combining QDS for fast simulation of dense regions and PDSC for rarefied regions

Excellent Progress Exceeds Goals UNIVERSITY OF CANTERBURY Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

Dense equilibrium, regions near nozzle and during injection
Rarefied non equilibrium regions near substrate and during expansion phase

Hypersonic flow over a forward facing cylinder

QDS output

800

700

600

500

400

300

200

100

n

0.4

0.35

New concept reactor: backwards facing substrate

0.25

0.3

Flow time = 0.0001 ms. Mean pressure = 18.5019

0

0.05

0.1

0.15

0.2

Mach 2.0 shock propagating in a tube with a rapid expansion

Potential spinoff

• Fast, robust computer modelling of flow

CFD

Finite element solution of the Navier-Stokes equations

Unstructured mesh for complex bodies

Long meshing time Numerical instability Viscosity included

QDS Finite volume calculation of flux from kinetic theory Structured mesh with cut-cells for all bodies Rapid meshing Stable Rapid solution time Requires correct treatment of viscosity

Application to Marsden Fund February 2009

- Liquid precursors
 - Less toxic
 - Easier to handle

Modelling droplet transport in rarefied gas flow

Continuity Equation: ٠

$$\frac{dm}{dt} = 4\pi r^2 S_A \left(\frac{M}{2\pi\overline{R}}\right)^{\frac{1}{2}} \left[\frac{P}{T^{\frac{1}{2}}} - \frac{SP_{gas}}{T_{gas}^{\frac{1}{2}}}\right]$$

Momentum Equation: •

 $\frac{dm}{dt} = \sum \dot{m}_{in} - \sum \dot{m}_{out}$

- $\underline{F}_{gas-drop} = \frac{\partial \underline{P}_{drop}}{\partial t} = S_A \dot{N}_{coll \ gas-drop} \overline{\underline{P}_{gas}} \qquad \longrightarrow \qquad \rho_{liquid} \ \frac{\partial \overline{V}}{\partial t} = S_A \dot{N}_{coll \ gas-drop} \rho_{gas} \overline{V}_{gas}$
- **Energy Equation:** ٠

$$\dot{E}_{rad} + \dot{E}_{condense} - \dot{E}_{evap} = \frac{dU}{dt}$$

$$\varepsilon \sigma 4\pi r^{2} (T_{sur}^{4} - T^{4}) + S_{A} \dot{N}_{coll \, gas-drop} h_{vap}(T) - \frac{dm}{dt} [h_{vap}(T) - h_{liq}(T)] = \rho_{liquid} \frac{4}{3}\pi r^{3} c_{p} \frac{\partial T}{\partial t}$$

$$\frac{\partial T}{\partial t} = \frac{3}{4\rho_{liquid}} \pi r^{3} c_{p} \left[\varepsilon \sigma 4\pi r^{2} (T_{sur}^{4} - T^{4}) + S_{A} \dot{N}_{coll \, gas-drop} h_{vap}(T) - \frac{dm}{dt} [h_{vap}(T) - h_{liq}(T)] \right]$$

Stop

No

